题目内容
在△ABC中,∠A>∠B,CD⊥AB,垂足为D,点D在AB上,若△ACD与△BCD相似,则∠ACB等于
- A.90°
- B.120°
- C.60°
- D.不能确定度数
A
分析:已知△ACD∽△BCD,可得出∠ACD=∠CBD,而∠ACD和∠CAD互为补角,因此∠CAD+∠CBD=90°,故∠ACB=90°.
解答:
解:∵△ACD与△BCD相似,
∴∠ACD=∠CBD;
∵CD⊥AB,
∴∠ADC=90°,即∠ACD+CAD=90°;
∴∠CAD+∠CBD=90°;
∴∠ACB=90°.
故选A.
点评:此题考查了相似三角形的性质,相似三角形的对应边的比相等,对应角相等.
分析:已知△ACD∽△BCD,可得出∠ACD=∠CBD,而∠ACD和∠CAD互为补角,因此∠CAD+∠CBD=90°,故∠ACB=90°.
解答:
∴∠ACD=∠CBD;
∵CD⊥AB,
∴∠ADC=90°,即∠ACD+CAD=90°;
∴∠CAD+∠CBD=90°;
∴∠ACB=90°.
故选A.
点评:此题考查了相似三角形的性质,相似三角形的对应边的比相等,对应角相等.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |