题目内容


如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是(  )

A.60°   B.65°    C.55°   D.50°

 


A【考点】多边形内角与外角;三角形内角和定理.

【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.

【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,

∴∠BCD+∠CDE=540°﹣300°=240°,

∵∠BCD、∠CDE的平分线在五边形内相交于点O,

∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,

∴∠P=180°﹣120°=60°.

故选:A.

【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网