搜索
题目内容
下面方程组的解法对不对?为什么?
解方程组
y=2x
3x+y=5
把①代入②得3x+2x=5,5x=5,所以x=1是方程组的解.
试题答案
相关练习册答案
不对,方程组的解应是一对未知数的值,不能求出一个就完了,还得求出y的值,并且把这一对x、y的值用大括号括起来.
练习册系列答案
新领程系列答案
优课堂给力A加系列答案
天府数学系列答案
天府前沿系列答案
文科爱好者系列答案
理科爱好者系列答案
新学案同步导与练系列答案
名师大课堂系列答案
351高效课堂导学案系列答案
状元成才路状元导练系列答案
相关题目
附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
x=1
x-1=2
或
x=2
x-1=1
或
x=-1
x-1=-2
或
x=-2
x-1=-1
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
或
或
或
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
或
或
或
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
或
或
或
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
(2007•白银)附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
或
或
或
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案