题目内容
分析:根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=
S正方形ABCD,即可得出选项.
| 1 |
| 4 |
解答:解:∵四边形ABCD、四边形PEFG是两个边长相等正方形,
∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,
∴∠BOC-∠COM=∠EOG-∠COM,
即∠BOM=∠CON,
∵在△BOM和△CON中
,
∴△BOM≌△CON,
∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=
S正方形ABCD,
即不管怎样移动,阴影部分的面积都等于
S正方形ABCD,
故选A.
∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,
∴∠BOC-∠COM=∠EOG-∠COM,
即∠BOM=∠CON,
∵在△BOM和△CON中
|
∴△BOM≌△CON,
∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=
| 1 |
| 4 |
即不管怎样移动,阴影部分的面积都等于
| 1 |
| 4 |
故选A.
点评:BO本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.
练习册系列答案
相关题目