题目内容

记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=  

64

解析试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x,然后根据指数相等即可求出n值.
解:(1+2)(1+22)(1+24)(1+28)…(1+2n),
=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),
=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),
=(2n﹣1)(1+2n),
=22n﹣1,
∴x+1=22n﹣1+1=22n
2n=128,
∴n=64.
故填64.
考点:平方差公式
点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式计算了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网