题目内容
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)
分析:(1)根据等腰三角形的判断(等角对等边),通过证明△ABC∽△CAD得出对应角相等得出△ADC和△BDC都是等腰三角形;(2)由(1)知BD=BC=AC,及AC2=AB•AD,可以求AC的值;
(3)等腰梯形的性质,结合等腰三角形的判定,上底=腰,底角=72°的等腰梯形有8个等腰三角形.
(3)等腰梯形的性质,结合等腰三角形的判定,上底=腰,底角=72°的等腰梯形有8个等腰三角形.
解答:
解:(1)在△ABC中,AC=BC,
∴∠B=∠A=36°,∠ACB=108°
在△ABC与△CAD中,∠A=∠B=36°
∵AC2=AB•AD
∴
=
=
∴△ABC∽△CAD
∴∠ACD=∠A=36°
∴∠CDB=72°,∠DCB=108°-36°=72°
∴△ADC和△BDC都是等腰三角形
(2)设AC=x,则x2=1×(1-x)
即x2+x-1=0,
∴x=
,
∴AC=
;
(3)说明:按照画出的梯形中,有4个,6个和8个等腰三角形三种情况分别给分
①有4个等腰三角形得(1);
②有6个等腰三角形,得(2);
③有8个等腰三角形,得(3).
∴∠B=∠A=36°,∠ACB=108°
在△ABC与△CAD中,∠A=∠B=36°
∵AC2=AB•AD
∴
| AC |
| AD |
| AB |
| AC |
| AB |
| BC |
∴△ABC∽△CAD
∴∠ACD=∠A=36°
∴∠CDB=72°,∠DCB=108°-36°=72°
∴△ADC和△BDC都是等腰三角形
(2)设AC=x,则x2=1×(1-x)
即x2+x-1=0,
∴x=
| ||
| 2 |
∴AC=
| ||
| 2 |
(3)说明:按照画出的梯形中,有4个,6个和8个等腰三角形三种情况分别给分
①有4个等腰三角形得(1);
②有6个等腰三角形,得(2);
③有8个等腰三角形,得(3).
点评:本题考查等腰三角形的判定和性质及相似三角形的性质的综合运用.
练习册系列答案
相关题目