题目内容
【题目】如图,AB为⊙O的直径,BC、AD是⊙O的切线,切点分别为B、A,过点O作EC⊥OD,EC交BC于点C,交AD于点E. ![]()
(1)求证:CE是⊙O的切线;
(2)若AE=1,AD=3,求阴影部分的面积.(结果保留π)
【答案】
(1)证明:作OH⊥CD,垂足为H,
![]()
∵BC、AD是⊙O的切线,
∴∠CBO=∠OAE=90°,
在△BOC和△AOE中,
,
∴△BOC≌△AOE,
∴OC=OE,
又∵EC⊥OD,
∴DE=DC,
∴∠ODC=∠ODE,
∴OH=OA,
∴CD是⊙O的切线
(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,
∴∠E=∠DOA,
又∵∠OAE=∠ODA=90°,
∴△AOE∽△ADO,
∴
=
,
∴OA2=EAAD=1×3=3,
∵OA>0,∴OA=
,
∴tanE=
=
,
∴∠DOA=∠E=60°,
∵DA=DH,∠OAD=∠OHD=90°,
∴∠DOH=∠DOA=60°,
∴S阴影部分=
×3×
+
×3×
﹣
=3
﹣π.
【解析】(1)首先作OH⊥CD,垂足为H,由BC、AD是⊙O的切线,易证得△BOC≌△AOE(ASA),继而可得OD是CE的垂直平分线,则可判定DC=DE,即可得OD平分∠CDE,则可得OH=OA,证得CD是⊙O的切线;(2)首先证得△AOE∽△ADO,然后由相似三角形的对应边成比例,求得OA的长,然后利用三角函数的性质,求得∠DOA的度数,继而求得答案.
【考点精析】通过灵活运用垂径定理和扇形面积计算公式,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)即可以解答此题.
练习册系列答案
相关题目