题目内容
计算:(1);(2).
为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A岛测得B岛在北偏西30°方向,C岛在北偏东15°方向,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离.(结果保留到整数,≈1.41,≈2.45)
在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D,联结AO、BO、AD、BD. 已知圆O的半径长为5 ,弦AB的长为8.
(1)如图1,当点D是弧AB的中点时,求CD的长;
(2)如图2,设AC=x, ,求y关于x的函数解析式并写出定义域;
(3)若四边形AOBD是梯形,求AD的长.
计算: _________.
如图菱形ABCD中,∠ADC=60°,M、N分别为线段AB,BC上两点,且BM=CN,且AN,CM所在直线相交于E.
(1)证明△BCM≌△CAN;
(2)∠AEM= °;
(3)求证DE平分∠AEC;
(4)试猜想AE,CE,DE之间的数量关系并证明.
如果反比例函数过A(2,-3),则m=__________。
如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转角度为( )
A. 45° B. 60° C. 90° D. 120°
已知,一次函数y=kx+b,当2≤x≤5时,﹣3≤y≤6.则2k+b的值是______.
点P(3,﹣1)关于坐标原点对称点为( )
A. (3,1) B. (﹣3,1) C. (﹣1,3) D. (﹣3,﹣1)