题目内容
“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.
(1)若学校单独租用这两种车辆各需多少钱?
(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.
(1)若学校单独租用这两种车辆各需多少钱?
(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.
(1)∵385÷42≈10辆,
∴单独租用42座客车需10辆,租金为320×10=3200元,
∵385÷60≈7辆,
∴单独租用60座客车需7辆,租金为460×7=3220元.
(2)设租用42座客车x辆,则60座客车(8-x)辆,由题意得
,
42x+60(8-x)≥385,
解得:x≤5
,
解320x+460(8-x)<3200,
解得:x>3
,
∴不等式组的解集为:
3
<x≤5
,
∵x取整数
∴x=4,5
当x=4时,租金为320×4+460×(8-4)=3120元;
当x=5时,租金为320×5+460×(8-5)=2980元.
答:租用42座客车5辆,60座客车3辆时,租金最少.
∴单独租用42座客车需10辆,租金为320×10=3200元,
∵385÷60≈7辆,
∴单独租用60座客车需7辆,租金为460×7=3220元.
(2)设租用42座客车x辆,则60座客车(8-x)辆,由题意得
|
42x+60(8-x)≥385,
解得:x≤5
| 5 |
| 18 |
解320x+460(8-x)<3200,
解得:x>3
| 3 |
| 7 |
∴不等式组的解集为:
3
| 3 |
| 7 |
| 5 |
| 18 |
∵x取整数
∴x=4,5
当x=4时,租金为320×4+460×(8-4)=3120元;
当x=5时,租金为320×5+460×(8-5)=2980元.
答:租用42座客车5辆,60座客车3辆时,租金最少.
练习册系列答案
相关题目