题目内容
分析:连接OO′交弧AB、AB分别于点C、D,根据切线的性质和垂径定理得AD的长,从而求得⊙O′的半径.
解答:
解:如图,
连接OO′交AB分别于点D,交弧AB于点C,
∵AB的长为2π,
∴由弧长公式得OA=3,
∵∠AOB=120°,
∴∠AOD=60°,
∵OC⊥AB,
∴∠ADO=90°,
∴∠OAD=30°,
∴OA=2OD,
∴OD=1.5,
∵OC=3,
∴CD=1.5,
∴CO′=
.
故答案为:
.
连接OO′交AB分别于点D,交弧AB于点C,
∵AB的长为2π,
∴由弧长公式得OA=3,
∵∠AOB=120°,
∴∠AOD=60°,
∵OC⊥AB,
∴∠ADO=90°,
∴∠OAD=30°,
∴OA=2OD,
∴OD=1.5,
∵OC=3,
∴CD=1.5,
∴CO′=
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题考查了切线的性质、垂径定理和弧长公式,是基础知识要熟练掌握.
练习册系列答案
相关题目