题目内容
【题目】已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG
![]()
(1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;
(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD.
①如图2,请探究∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由;
②如图3,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的
,则∠EFG=______°(直接写出答案).
【答案】(1)证明见解析;(2)①2∠EFG=∠AEF+∠FGC;②25.
【解析】
(1)过F作FQ∥AB,利用平行线的性质,即可得到∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;
(2)①延长AB,CD,交于点P,依据∠FEP=180°-∠AEF,∠FGP=180°-∠FGC,即可得到∠FEP+∠FGP=360°-(∠AEF+∠FGC),再根据四边形内角和,即可得到四边形EFGP中,∠F+∠P=360°-(∠FEP+∠FGP)=∠AEF+∠FGC,进而得出结论;
②根据2∠EFG=∠AEF+∠FGC,∠AEF比∠FGC的3倍多10°,∠FGC是∠EFG的
,整理即可得到答案.
(1)如图1,过F作FQ∥AB,
![]()
∵AB∥CD,
∴PQ∥CD,
∴∠AEF=∠QFE,∠FGC=∠GFQ,
∴∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;
(2)①如图2,延长AB,CD,交于点P,
![]()
∵EG同时平分∠BEF和∠FGD,
∴∠FEG=∠PEG,∠FGE=∠PGE,
∴∠F=∠P,
∵∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,
∴∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),
∵四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=360°﹣[360°﹣(∠AEF+∠FGC)]=∠AEF+∠FGC,
即2∠EFG=∠AEF+∠FGC;
②由①可知:2∠EFG=∠AEF+∠FGC=3∠FGC+10°+∠FGC=4∠FGC+10°,
又∵∠FGC=
∠EFG
∴2∠EFG=
∠EFG+10°,
∴∠EFG=25°.
故答案为:25.