题目内容

如图,正方形ABCD中,在AD的延长线上取点E、F,使DE=AD,DF=BD;BF分别交CD,CE于H、G点,连接DG,下列结论:①∠GDH=∠GHD;②△GDH为正三角形;③EG=CH;④EC=2DG;⑤S△CGH:S△DBH=1:2.其中正确的是


  1. A.
    ①②③
  2. B.
    ②③④
  3. C.
    ③④⑤
  4. D.
    ①③⑤
D
分析:本题为选择题,做选择题是要有技巧,像排除法,假设法都可以用,先看选项因为都有③选项故③可作为已知条件求解,
△DHB∽△CHG根据面积比等于相似比的平方可得S△CGH:S△DBH=1:2故选项有⑤,
然后再看①④中间哪个正确,先看①过G作GO⊥CD于O,设正方形边长为1,则,可求得CH=====所以OC=,OD=1-,又==所以DH=,DO=DH-OH=1-,可得DO=OH,△DGH为等腰三角形,∠GDH=∠GHD,①正确.
解答:解:(1)∵选项都有③,故可确定EG=CH.
(2)由题意可得四边形BCED为平行四边形,进而推出△DHB∽△CHG,==
∵面积比等于相似比的平方
∴S△CGH:S△DBH=1:2.
(3)先看①设正方形边长为1.则==可求得CH=====所以OD=1-,又==∴DH=.DO=DH-OH=1-∴可得DO=OH,△DGH为等腰三角形,即得∠GDH=∠GHD,①正确
故选D.
点评:本题考查的知识点比较多,正方形四边相等的性质及等腰三角形两底角相等的性质,面积比等于相似比的平方,相似三角形的比例关系要熟练掌握,另外还要掌握做选择题的一些方法,可是选择题的解答即快又准.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网