题目内容

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是________.

2.4<R≤3
分析:要使圆与斜边AB有两个交点,则应满足直线和圆相交,且半径不大于AC.要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.
解答:解:如图,
∵BC>AC,
∴以C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD,小于或等于AC,
由勾股定理知,AB==5.
∵S△ABC=AC•BC=CD•AB=×3×4=×5•CD,
∴CD=2.4,
即R的取值范围是2.4<R≤3.
点评:本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.
特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网