题目内容

精英家教网如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
分析:(1)利用SAS证明△ABC≌△ADE,得BC=DE.
(2)根据(1)里的全等关系,可证出△BFD∽△DFG,所以
BF
DF
=
DF
GF
,即FD2=FG•FB.
解答:解:(1)BC、DE的数量关系是BC=DE.
理由如下:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,
又∵AB=AD,AC=AE,
∴△ABC≌△ADE.(SAS)
∴BC=DE.

(2)线段FD是线段FG和FB的比例中项.
理由如下:∵△ABC≌△ADE,∴∠ABC=∠ADE.
∵∠ABC=∠CBD,∴∠ADE=∠CBD,
又∵∠BFD=∠DFG,
∴△BFD∽△DFG.
BF
DF
=
DF
GF
∴FD2=FG•FB.
即线段FD是线段FG和FB的比例中项.
点评:本题利用了全等三角形的判定和性质,以及相似三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网