题目内容
在?ABCD中,点E,F分别在边BC,AD上,且AF=CE.
(Ⅰ)如图①,求证四边形AECF是平行四边形;
(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.
计算:
;
.
若一个多边形的内角和与外角和之和是1800°,则此多边形是( )
A. 八边形 B. 十边形 C. 十二边形 D. 十四边形
一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法如图:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是( )
A. 纸带①的边线平行,纸带②的边线不平行 B. 纸带①的边线不平行,纸带②的边线平行
C. 纸带①、②的边线都平行 D. 纸带①、②的边线都不平行
在、、、、中无理数的个数是
A. 1个 B. 2个 C. 3个 D. 4个
如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为_____(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
A. 5元 B. 10元 C. 20元 D. 10元或20元
(8分)如图,在正方形ABCD中,对角线AC、BD相交于O,E、F分别在OD、OC上,且DE=CF,连结DF、AE,AE的延长线交于DF于点M,求证:AM⊥DF.
某面粉加工厂要加工一批小麦,2台大面粉机和5台小面粉机同时工作2小时共加工小麦1.1万斤;3台大面粉机和2台小面粉机同时工作5小时共加工小麦3.3万斤.
(1)1台大面粉机和1台小面粉机每小时各加工小麦多少万斤?
(2)该厂现有9.45万斤小麦需要加工,计划使用8台大面粉机和10台小面粉机同时工作5小时,能否全部加工完?请你帮忙计算一下.