题目内容
一次函数的图象与x轴的交点坐标为___________.
下列各式计算正确的是( )
A. a2+2a3=3a5 B. (a2)3=a5 C. a6÷a2=a3 D. a·a2=a3
如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是____.
如图1,直角坐标系中有一矩形OABC,其中O是坐标原点,点A,C分别在x轴和y轴上,点B的坐标为(3,4),直线交AB于点D,点P是直线位于第一象限上的一点,连接PA,以PA为半径作⊙P,
(1)连接AC,当点P落在AC上时, 求PA的长;
(2)当⊙P经过点O时,求证:△PAD是等腰三角形;
(3)设点P的横坐标为m,
①在点P移动的过程中,当⊙P与矩形OABC某一边的交点恰为该边的中点时,求所有满足要求的m值;
②如图2,记⊙P与直线的两个交点分别为E,F(点E在点P左下方),当DE,DF满足时,求m的取值范围.(请直接写出答案)
(1)计算: . (2)化简: .
P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知、的度数别为88°、32°,则∠P的度数为( )
A. 26° B. 28° C. 30° D. 32°
如图(1),直线⊥轴于点P,Rt△ABC中,斜边AB=5,直角边AC=3,点A(0, )在轴上运动,直角边BC在直线上,将△ABC绕点P顺时针旋转90°,得到△DEF。以直线为对称轴的抛物线经过点F。
(1)求点F的坐标(用含的式子表示)
(2)①如图(2)当抛物线的顶点为点C时,抛物线恰好过坐标原点。求此时抛物线的解析式;
②如图(3)不改变①中抛物线的开口方向和形状,让点A的位置发生变化,使抛物线与线段AB始终有交点M(, ).
(ⅰ)求的取值范围;
(ⅱ)变化过程中,当变成某一个值时,点A的位置唯一确定,求此时点M的坐标。
图(1) 图(2) 图(3)
已知一个正多边形的一个内角是140°,则这个正多边形的边数是()
A. 6 B. 7 C. 8 D. 9
如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).
(1)点B和点C的坐标分别是______、______.
(2)将△ABC平移后使点C与点D重合,点A、B与点E、F重合,画出△DEF.并直接写出E、F的坐标.
(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为______.