题目内容
解下列方程:
(1)
(x-1)-
(2x+1)=0
(2)x-2[x-4(x-1)]-8=-2
(3)
(
x+1)=1
(4)
(x+1)+1=
-
(x+1).
(1)
| 1 |
| 3 |
| 1 |
| 2 |
(2)x-2[x-4(x-1)]-8=-2
(3)
| 3 |
| 4 |
| 4 |
| 3 |
(4)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
分析:先去括号、移项,再合并同类项,最后化系数为1,从而得到方程的解.
解答:解:(1)
(x-1)-
(2x+1)=0,
x-
-x-
=0,
-
x=
,
x=-
;
(2)x-2[x-4(x-1)]-8=-2,
x-2[x-4x+4]-8=-2,
x-2x+8x-8-8=-2,
7x=14,
x=2;
(3)
(
x+1)=1,
x+
=1,
x=
;
(4)
(x+1)+1=
-
(x+1)
x+
+1=
-
x-
,
x=-
,
x=-2.
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
-
| 2 |
| 3 |
| 5 |
| 6 |
x=-
| 5 |
| 4 |
(2)x-2[x-4(x-1)]-8=-2,
x-2[x-4x+4]-8=-2,
x-2x+8x-8-8=-2,
7x=14,
x=2;
(3)
| 3 |
| 4 |
| 4 |
| 3 |
x+
| 3 |
| 4 |
x=
| 1 |
| 4 |
(4)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 5 |
| 6 |
| 10 |
| 6 |
x=-2.
点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号
练习册系列答案
相关题目