题目内容
小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:
“如果(x﹣2)x+3=1,求x的值”,她解答出来的结果为x=﹣3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?
等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 。
【问题情境】一节数学课后,老师布置了一道课后练习题:
如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.
(1)阅读理解,完成解答
本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写这道练习题的证明过程;
(2)特殊位置,证明结论
若CE平分∠ACD,其余条件不变,求证:AE=BF;
(3)知识迁移,探究发现
如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)
把多项式分解因式的结果是 .
据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( )
A. B. C. D.
(6分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.(在横线上填写正确的依据或证明步骤)
解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分线(角平分线的定义).
如图,五边形ABCDE是一块草地.小明从点S出发,沿着这个五边形的边步行一周,最后仍回到起点S处,小明在各拐弯处转过的角度之和是_____o.
为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.
(1)求在这次调查中,一共抽查了多少名学生;
(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;
(3)若该校有2400名学生,请估计该校参加“美术”活动项目的人数
等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度.
A.25 B.40 C.25或40 D.60