题目内容
如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
如图,在等边△ABC中, M为BC边上的中点, D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE= 60°度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(2)的条件下,如图3,若点P、Q在BE的延长线上,且CP=CQ=4,AB=6,试求PQ的长.
如图1,在,将一块与全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿方向平移的距离为___________;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.
用配方法解方程2x 2 + 3=7x时,方程可变形为( )
A.(x–)2= B.(x–)2=
C.(x–)2= D.(x–)2=
若在实数范围内有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≥3 D.x≤3
如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 _________ .
二次函数的图象如右图所示,
若,,则( )
A.,,
B.,,
C.,,
D.,,
﹣4cos60°+(2014﹣π)0﹣tan45°=_________.
如图,在菱形中,对角线与相交于点,,在菱形的外部以为边作等边三角形。点是对角线上一动点(点不与点、D重合),将线段绕点顺时针方向旋转得到线段,连接。
(1)求的长;
(2)如图2,当点在线段上,且点三点在同一条直线上时,求证:
(3)连接,若的面积为40,请画出图形,并直接写出的周长。