题目内容
【题目】点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°
![]()
(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;
(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE的数量关系;
(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数
【答案】(1)135°;(2)∠BOD=2∠COE;(3)67.5°.
【解析】
(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE平分∠AOC,OF平分∠BOD,得∠COE+∠DOF=45°,即可求出∠EOF的度数;
(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°
∠AOD,再由角平分线的定义进行计算,即可得出结果;
(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.
解:(1)如图:
![]()
∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠COE+∠DOF=
,
∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;
故答案为:135°;
(2)∠BOD=2∠COE;
理由如下:如图,
![]()
∵∠COD=90°.
∴∠BOD+∠AOC=90°,
∵OE平分∠AOD,
∴∠AOE=∠DOE=
∠AOD,
又∵∠BOD=180°
∠AOD,
∴∠COE=∠AOE
∠AOC
=
∠AOD
(90°
∠BOD)
=
(180°
∠BOD)
90°+∠BOD
=
∠BOD,
∴∠BOD=2∠COE;
(3)如图,
![]()
∵OC为∠AOE的角平分线,OF平分∠COD,
∴∠AOC=∠COE,∠COF=∠DOF=45°,
∵∠EOC=3∠EOF,
设∠EOF=x,则∠EOC=3x,
∴∠COF=4x,
∴∠AOE=2∠COE=6x,∠DOF=4x,
∵∠COD=90°,
∴4x+4x=90°,
解得:x=11.25°,
∴∠AOE=6×11.25°=67.5°.