题目内容

如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的长.
(1)证明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,EC=DC.
∵∠ACE=∠DCE﹣∠DCA,∠BCD=∠ACB﹣∠DCA,∠ACB=∠ECD=90°,
∴∠ACE=∠BCD.
在△ACE和△BCD中
∴△ACE≌△BCD(SAS).
(2)解:又∠BAC=45°
∴∠EAD=∠EAC+∠BAC=90°,
即△EAD是直角三角形,
∴DE===13.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网