题目内容

如图,S△ABC=60,BE:CE=1:2,AD:CD=3:1,则S四边形DOEC=(  )
分析:设S△ADO=x,S四边形DOEC=y,S△ABO=a,S△BOE=b.根据图形和三角形的面积公式列出关于a、b、x、y的四元一次方程组,通过解方程组即可求得四边形CDOE的面积.
解答:解:作DF∥AE交BC于点F.
∵S△ABC=60,BE:CE=1:2,AD:CD=3:1,
∴S△ABD=45,S△ACE=40.
∵DF∥AE,
CF
EF
=
CD
AD
=
1
3
,即
CF
EC
=
1
4

又∵
BE
EC
=
1
2

BE
EF
=
2
3

∵OE∥DF,
OB
OD
=
BE
EF
=
2
3

∴S△OAD=
3
5
S△ABD=
3
5
×45=27.
所以四边形DOEC的面积=S△ACE-S△OAD=40-27=13.
故选D.
点评:本题考查了三角形的面积.解得该题的关键是找出同高的三角形的面积间的数量关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网