题目内容
已知抛物线y=x2-3x-4,则它与x轴的交点坐标是 .
【答案】分析:由于抛物线与x轴的交点的纵坐标为0,所以把y=0代入函数的解析式中即可求解.
解答:解:∵抛物线y=x2-3x-4,
∴当y=0时,x2-3x-4=0,
∴x1=4,x2=-1,
∴与x轴的交点坐标是(-1,0),(4,0).
故答案为:(-1,0),(4,0).
点评:此题主要考查了求抛物线与x轴的交点坐标,解题的关键是把握与x轴的交点坐标的特点才能很好解决问题.
解答:解:∵抛物线y=x2-3x-4,
∴当y=0时,x2-3x-4=0,
∴x1=4,x2=-1,
∴与x轴的交点坐标是(-1,0),(4,0).
故答案为:(-1,0),(4,0).
点评:此题主要考查了求抛物线与x轴的交点坐标,解题的关键是把握与x轴的交点坐标的特点才能很好解决问题.
练习册系列答案
相关题目
已知抛物线y=x2-8x+c的顶点在x轴上,则c等于( )
| A、4 | B、8 | C、-4 | D、16 |