题目内容
等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( )
A. a B. a C. a D. a或a
下列说法正确的是( )
A. 三点确定一个圆
B. 一个三角形只有一个外接圆
C. 和半径垂直的直线是圆的切线
D. 三角形的内心到三角形三个顶点距离相等
若,则的值为________.
利用计算器求下列各式的值:
(1); (2);
(3); (4)
如图,△ABC中,∠ACB=90°,CD是斜边上的高,若AC=8,AB=10,tan∠BCD=__________.
如图,平面直角坐标系中,△ABC为等边三角形,其中点A,B,C的坐标分别为(-3,-1),(-3,-3),(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2.
(1)直接写出点C1,C2的坐标.
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?若能,请直接写出所旋转的度数;若不能,请说明理由.
(3)设当△ABC的位置发生变化时,△A2B2C2,△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位长度时,△A1B1C1与△A2B2C2完全重合?并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.
(1)求点P与点Q之间的距离;
(2)求∠APB的度数.
如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.
(1)猜想BG与EG的数量关系.并说明理由;
(2)延长DE,BA交于点H,其他条件不变,
①如图2,若∠ADC=60°,求的值;
②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)
若等腰三角形的顶角为40°,则它的底角度数为( )
A. 40° B. 50° C. 60° D. 70°