题目内容

如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是

A. B.

C.π- D.π-

 

【答案】

A.

【解析】

试题分析:根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBFD的面积等于△ABD的面积,进而求出即可

连接BD,

∵四边形ABCD是菱形,∠A=60°,

∴∠ADC=120°,

∴∠1=∠2=60°,

∴△DAB是等边三角形,

∵AB=2,

∴△ABD的高为3,

∵扇形BEF的半径为2,圆心角为60°,

∴∠4+∠5=60°,∠3+∠5=60°,

∴∠3=∠4,

设AD、BE相交于点G,设BF、DC相交于点H,

在△ABG和△DBH中,

 ,

∴△ABG≌△DBH(ASA),

∴四边形GBFD的面积等于△ABD的面积,

∴图中阴影部分的面积是:S扇形EBF-SABD= .

故选:B.

考点:1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网