题目内容
【题目】如图,在矩形
中,
,点
是
的中点,点
在
上,
,点
在线段
上.若
是以
为顶角的等腰三角形且底角与
相等,则
____.
![]()
【答案】6或者![]()
【解析】
分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,则∠PFM=∠PFN=90°,由矩形的性质得出AB=CD,BC=
,∠A=∠C=90°,得出AB=CD=
,BD=
,证明△PDF∽△BDA,得出
,求出PF=
,证出CE=2CD,由等腰三角形的性质得出MF=NF,∠PNF=∠DEC,证出△PNF∽△DEC,得出
,求出NF=2PF=3,即可得出答案;
②MN为等腰△PMN的腰时,作PF⊥BD于F,由①得:PF=
,MF=3,设MN=PN=x,则FN=3-x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
分两种情况:
①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:
则∠PFM=∠PFN=90°,
∵四边形ABCD是矩形,
∴AB=CD,BC=
,∠A=∠C=90°,
∴AB=CD=
,BD=![]()
∵点P是AD的中点,
∴PD=![]()
∵∠PDF=∠BDA,
∴△PDF∽△BDA,
∴
,即
,
解得:PF=
,
∵CE=2BE,
∴BC=AD=3BE,
∴BE=CD,
∴CE=2CD,
∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,
∴MF=NF,∠PNF=∠DEC,
![]()
![]()
∵∠PFN=∠C=90°,
∴△PNF∽△DEC,
∴![]()
∴MF=NF=2PF=3,
∴MN=2NF=6;
②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:
由①得:PF=
,MF=3,
设MN=PN=x,则FN=3-x,
在Rt△PNF中,![]()
解得:x=![]()
,即MN=
;
综上所述,MN的长为6或
;
故答案为:6或
.
练习册系列答案
相关题目