题目内容
【题目】如图,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
![]()
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
【答案】(1)
;(2)
;(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形
【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
(1)当t=2时BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,
∴PQ=
=
cm
(2)依题意得: BQ=2t ,BP=16-t
2t =16-t 解得:t=![]()
即出发
秒钟后,△PQB能形成等腰三角形;
(3) ①当CQ=BQ时(如下图),则∠C=∠CBQ,
![]()
∵∠ABC=90°
∴∠CBQ+∠ABQ=90°
∠A+∠C=90°
∴∠A=∠ABQ
∴BQ=AQ
∴CQ=AQ=10
∴BC+CQ=22
∴t=22÷2=11秒
②当CQ=BC时(如图2),则BC+CQ=24
∴t=24÷2=12秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
![]()
则BE=
,
∴CE=
,
故CQ=2CE=14.4,
所以BC+CQ=26.4,
∴t=26.4÷2=13.2秒
由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形