题目内容
在△ABC中,D、E分别是AB、AC的中点,DE=4,则BC=________.
8
分析:先根据题意画出图形,由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,根据三角形中位线定理解答即可.
解答:
解:如图所示,
∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=4,
∴BC=2DE=2×4=8.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
分析:先根据题意画出图形,由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,根据三角形中位线定理解答即可.
解答:
∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=4,
∴BC=2DE=2×4=8.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |