题目内容
如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有
- A.3对
- B.4对
- C.5对
- D.6对
C
分析:连接OA、OB、OC、OD,根据中心对称的性质可得OA=OC,OB=OD,然后判定四边形ABCD是平行四边形,根据平行四边形的中心对称性写出相等的线段即可得解.
解答:
解:如图,连接OA、OB、OC、OD,
∵四边形ABCD是中心对称图形,对称中心为点O,
∴OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OE=OF,AE=CF,BF=DE,
相等的线段共有5对.
故选C.
点评:本题考查了中心对称,作辅助线,判断出四边形ABCD是平行四边形是解题的关键,也是本题的难点.
分析:连接OA、OB、OC、OD,根据中心对称的性质可得OA=OC,OB=OD,然后判定四边形ABCD是平行四边形,根据平行四边形的中心对称性写出相等的线段即可得解.
解答:
∵四边形ABCD是中心对称图形,对称中心为点O,
∴OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OE=OF,AE=CF,BF=DE,
相等的线段共有5对.
故选C.
点评:本题考查了中心对称,作辅助线,判断出四边形ABCD是平行四边形是解题的关键,也是本题的难点.
练习册系列答案
相关题目