题目内容

16.解方程组:
(1)$\left\{\begin{array}{l}{x-5y=0}\\{3x+2y=17}\end{array}\right.$              (2)$\left\{\begin{array}{l}{9x+2y=15}\\{3x+4y=10}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3(y-2x)+4y=2x-1}\\{2x+5y=7}\end{array}\right.$       (4)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-5y=0①}\\{3x+2y=17②}\end{array}\right.$,
①×3-②得:-17y=-17,即y=1,
把y=1代入①得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{9x+2y=15①}\\{3x+4y=10②}\end{array}\right.$,
①×2-②得:15x=20,即x=$\frac{4}{3}$,
②×3-①得:10y=15,即y=$\frac{3}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{3}{2}}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{8x-7y=1①}\\{2x+5y=7②}\end{array}\right.$,
②×4-①得:27y=27,即y=1,
把y=1代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{x+4y=14①}\\{3x-4y=-2②}\end{array}\right.$,
①+②得:4x=12,即x=3,
把x=3代入①得:y=$\frac{11}{4}$,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{11}{4}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网