题目内容
16.解方程组:(1)$\left\{\begin{array}{l}{x-5y=0}\\{3x+2y=17}\end{array}\right.$ (2)$\left\{\begin{array}{l}{9x+2y=15}\\{3x+4y=10}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3(y-2x)+4y=2x-1}\\{2x+5y=7}\end{array}\right.$ (4)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x-5y=0①}\\{3x+2y=17②}\end{array}\right.$,
①×3-②得:-17y=-17,即y=1,
把y=1代入①得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{9x+2y=15①}\\{3x+4y=10②}\end{array}\right.$,
①×2-②得:15x=20,即x=$\frac{4}{3}$,
②×3-①得:10y=15,即y=$\frac{3}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{3}{2}}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{8x-7y=1①}\\{2x+5y=7②}\end{array}\right.$,
②×4-①得:27y=27,即y=1,
把y=1代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{x+4y=14①}\\{3x-4y=-2②}\end{array}\right.$,
①+②得:4x=12,即x=3,
把x=3代入①得:y=$\frac{11}{4}$,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{11}{4}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | 35° | B. | 45° | C. | 50° | D. | 55° |
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
| A. | AC∥DF | B. | CF∥AB | C. | CF=a厘米 | D. | BD=a厘米 |