题目内容


如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.

 


证明:(1)∵AE⊥AB,AF⊥AC,

∴∠BAE=∠CAF=90°,

∴∠BAE+∠BAC=∠CAF+∠BAC,

即∠EAC=∠BAF,

在△ABF和△AEC中,

∴△ABF≌△AEC(SAS),

∴EC=BF;

(2)如图,根据(1),△ABF≌△AEC,

∴∠AEC=∠ABF,

∵AE⊥AB,

∴∠BAE=90°,

∴∠AEC+∠ADE=90°,

∵∠ADE=∠BDM(对顶角相等),

∴∠ABF+∠BDM=90°,

在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,

所以EC⊥BF.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网