题目内容
若方程是关于的一元二次方程,则的取值范围是( )
A. m≠-1 B. m=-1 C. m≥-1 D. m≠0
已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
如图,△ACE≌△DBF,若∠E=∠F,AD=8,BC=2,则AB等于( )
A. 6 B. 5 C. 3 D. 不能确定
边长为的等边三角形的外接圆的半径等于________.
如图,一条抛物线与轴相交于、两点,其顶点在折线上移动,若点、、的坐标分别为、、,点的横坐标的最小值为,则点的横坐标的最大值为( )
A. 1 B. 2 C. 3 D. 4
已知,.求:A-2B.
计算:_____________.
“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(,)、R(,),求直线OM对应的函数表达式(用含,的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明)
规定一种新运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3
(1)求(﹣2)※3的值;
(2)若1※x=3,求x的值;
(3)若(﹣2)※x=﹣2+x,求(﹣2)※x的值.