题目内容
已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;
(2)当m=-3时,求方程的根.
【答案】分析:(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以判断出根的情况;
(2)把m的值代入方程,用因式分解法求解即可.
解答:解:(1)∵当m=3时,
△=b2-4ac=22-4×3=-8<0,
∴原方程无实数根;
(2)当m=-3时,
原方程变为x2+2x-3=0,
∵(x-1)(x+3)=0,
∴x-1=0,x+3=0,
∴x1=1,x2=-3.
点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
(2)把m的值代入方程,用因式分解法求解即可.
解答:解:(1)∵当m=3时,
△=b2-4ac=22-4×3=-8<0,
∴原方程无实数根;
(2)当m=-3时,
原方程变为x2+2x-3=0,
∵(x-1)(x+3)=0,
∴x-1=0,x+3=0,
∴x1=1,x2=-3.
点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
| 1 |
| x1 |
| 1 |
| x2 |
| A、8 | B、-7 | C、6 | D、5 |