题目内容

如图,在四边形ABCD中,∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.若AB=2,则CD的长为


  1. A.
    数学公式
  2. B.
    2
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:设BE=x,则AE=AB-BE=2-x过C作CE⊥AB,过A作AF⊥DC,利用四边形的内角和求出∠DCA的度数,进而求出∠FCA=30°,∠CAE=30°,∠DAF=105°-30°-30°=60°,再利用直角三角形的性质和锐角三角形函数以及勾股定理即可求出CD的长.
解答:解:设BE=x,则AE=AB-BE=2-x
过C作CE⊥AB,过A作AF⊥DC,
∴∠DFA=∠CEA=90°,
∵∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,
∴∠DCA=360°-105°-105°-45°-45°=60°,
∴∠FCA=30°,
∵∠ACB=105°,∠B=45°,
∴∠ACE=105°-45°=60°,
∴∠CAE=30°,
∴∠DAF=105°-30°-30°=60°,
∵AB=2,
∴CE=BE=x,

∴x=-1,
∴AC=2x=2-2,
∴AF==3-
∵∠D=∠DAF=45°,
∴AF=DF=3-
∴DC=CF+DF=-1+3-=2,
故选B.
点评:本题考查了四边形的内角和、三角形的内角和、含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半以及勾股定理的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网