题目内容
【题目】已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H. ![]()
(1)求证:AE=CK;
(2)如果AB=a,AD=
(a为大于零的常数),求BK的长:
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.
【答案】
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠DAE=∠BCK,
∵BK⊥AC,DH∥KB,
∴∠BKC=∠AED=90°,
∴△BKC≌△ADE,
∴AE=CK
![]()
(2)解:∵AB=a,AD=
=BC,
∴AC=
=
=
![]()
∵BK⊥AC,∠ABC=90°,
∴在Rt△ABC中,由三角形的面积公式得:
AB×BC=
AC×BK,
∴a×
a=
a×BK,
∴BK=
a
(3)解:DG是圆的弦,又有AE⊥GD得GE=ED,
∵DE=6,
∴GE=6,
又∵F为EG中点,
∴EF=
EG=3,
∵△BKC≌△DEA,
∴BK=DE=6,
∴EF=
BK,且EF∥BK,
∴△AEF∽△AKB,且相似比为1:2,
∴EF为△ABK的中位线,
∴AF=BF,
又∵∠ADF=∠H,∠DAF=∠HBF=90°,
∴△AFD≌△BFH(AAS),
∴HF=DF=3+6=9,
∴GH=6,
∵DH∥KB,BK⊥AC,四边形ABCD为矩形,
∴∠AEF=∠DEA=90°,
∴∠FAE+∠DAE=∠FAE+∠AFE=90°,
∴∠AFE=∠DAE,
∴△AEF∽△DEA,
∴AE:ED=EF:AE,
∴AE2=EFED=3×6=18,
∴AE=3
,
∵△AED∽△HEC,
∴
=
=
,
∴AE=
AC,
∴AC=9
,
则AO=
,
故⊙O的半径是
,GH的长是6.
【解析】(1)根据ABCD是矩形,求证△BKC≌△ADE即可;(2)根据勾股定理求得AC的长,根据三角形的面积公式得出
AB×BC=
AC×BK,代入即可求得BK.(3)根据三角形中位线定理可求出EF,再利用△AFD≌△HBF可求出HF,然后即可求出GH;利用射影定理求出AE,再利△AED∽△HEC求证AE=
AC,然后即可求得AC即可.
【考点精析】掌握三角形中位线定理和垂径定理是解答本题的根本,需要知道连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.