题目内容

a2-2a-1
+b2+4b+4=0

(1)求2a2-4a+5b的立方根;        
(2)求a2+a-2+b2的值.
分析:先将b2+4b+4化为完全平方式,再根据非负数的性质列出关于a、b的方程,再代入代数式求值.
解答:解:∵原式可化为
a2-2a-1
+(b+2)2=0

∴a2-2a-1=0,b+2=0,
解得,a1=1+
2
,a2=1-
2

∴b=-2,
(1)①2a2-4a+5b
=2×(1+
2
2-4×(1+
2
)+5×(-2)
=2×(1+2+2
2
)-4-4
2
-10
=-8;
其立方根为-2;
②2a2-4a+5b
=2×(1-
2
2-4×(1-
2
)+5×(-2)
=2×(1+2-2
2
)-4+4
2
-10
=-8;
其立方根为-2;
(2)①a2+a-2+b2
=(1+
2
2+
1
(1+
2
)2
+(-2)2
=14.
②a2+a-2+b2
=(1-
2
2+
1
(1-
2
)
2
+(-2)2
=14.
点评:本题考查了非负数的性质和代数式求值:要知道几个非负数的和为0时,这几个非负数都为0,还要熟悉二次根式的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网