题目内容
如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.
已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( )
A. 点火后9 s和点火后13 s的升空高度相同
B. 点火后24 s火箭落于地面
C. 点火后10 s的升空高度为139 m
D. 火箭升空的最大高度为145 m
如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.
(1)求证:AD=AN;
(2)若AE=,ON=1,求⊙O的半径.
已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A、B两个样本的下列统计量对应相同的是( )
A. 平均数 B. 方差 C. 中位数 D. 众数
为参加重庆市校园足球开幕式,某学校老师欲给演出学生租用男、女演出服装若干套以供开幕式伴舞用.已知5套男装和8套女装租用一天共需租金510元,6套男装和10套女装租用一天共需630元
(1)租用男装、女装一天的价格分别是多少?
(2)该节目原计划由6名男同学和17名女同学完成,后因节目需要,将其中3名女同学由伴舞角色转向歌手角色,歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?
的立方根是 .
已知点A的坐标为(﹣2,3),则点A关于y轴的对称点的坐标是( )
A. (﹣2,3) B. (2,3) C. (2,﹣3) D. (﹣2,﹣3)
分解因式:9x3﹣18x2+9x= .
在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.
(1)如图,点D在线段CB上,四边形ACDE是正方形.
①若点G为DE中点,求FG的长.
②若DG=GF,求BC的长.
(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.