题目内容
【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
![]()
A.
B.
C.
D. 不能确定
【答案】B
【解析】
过P作BC的平行线,交AC于M;则△APM也是等边三角形,在等边三角形APM中,PE是AM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.
解答:解:过P作PM∥BC,交AC于M;
![]()
∵△ABC是等边三角形,且PM∥BC,
∴△APM是等边三角形;
又∵PE⊥AM,
∴AE=EM=
AM;(等边三角形三线合一)
∵PM∥CQ,
∴∠PMD=∠QCD,∠MPD=∠Q;
又∵PA=PM=CQ,
∴△PMD≌△QCD(ASA);
∴CD=DM=
CM;
∴DE=DM+ME=
(AM+MC)=
AC=
,故选B.
练习册系列答案
相关题目