题目内容
如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为 .
如图,DE是△ABC中边AC的垂直平分线,若BC=18 cm, AB=10 cm,则△ABD的周长为( )
A.16 cm B.18 cm C.26 cm D.28 cm
(6分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.(在横线上填写正确的依据或证明步骤)
解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分线(角平分线的定义).
如图,在平行四边形ABCD中,CE⊥AB且E为垂足.如果∠A=125°,则∠BCE=( )
A.55° B.35° C.25° D.30°
为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.
(1)求在这次调查中,一共抽查了多少名学生;
(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;
(3)若该校有2400名学生,请估计该校参加“美术”活动项目的人数
若最简二次根式与是同类二次根式,则a的值为 .
口ABCD中,∠A︰∠B︰∠C︰∠D可以为( )
A、1︰2︰3︰4 B、1︰2︰2︰1 C、2︰2︰1︰1 D、2︰1︰2︰1
计算:= .
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.