题目内容
如图是由5个高和底面直径相等的圆柱体搭成的立体图形,这个立体图形的左视图是( )
如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( )
A. 3cm B. 4cm C. 2.5cm D. 2cm
先化简,再求值:(3a+2)2-9a(a+1),其中a=.
如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB上任意一点(不与点A、B重合),CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE的中点,则四边形ODEF的周长为( )
A.4 B.6 C.8 D.10
甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车匀速行驶(汽车速度大于摩托车的速度);甲先到达B地停留半个小时后返回A地,如图是他们之间的距离y(千米)与甲出发时间x(小时)之间的函数图象,其中D表示甲返回到A地.
(1)求甲乘汽车从A地前往B地和从B地返回A地的速度;
(2)求线段CD所表示的y(千米)与x(小时)之间的函数关系式;
(3)求甲车出发多长时间辆车相距50千米.
化简:(a+)÷(a﹣2+).
如图,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)求二次函数的解析式;
(2)判断△ABC的形状,并说明理由;
(3)若点H在x轴上运动,当以点A、H、C为顶点的三角形是等腰三角形时,请直接写出此时点H的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
有一箱子装有3张分别标示4、5、6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数为5的倍数的概率为( )
A. B. C. D.