题目内容
如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为 .
计算:
(1)﹣4+
(2)+2﹣(﹣)
(3)(2+)(2﹣);
(4)+﹣(﹣1)0.
如图,某日的钱塘江观潮信息如图:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.
(1)求m的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).
若5x=125y,3y=9z,则x:y:z等于( )
A. 1:2:3 B. 3:2:1 C. 1:3:6 D. 6:2:1
如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).
(1)求小敏到旗杆的距离DF.(结果保留根号)
(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( )
A. B. C. D.
一组数据:2,5,4,3,2的中位数是( )
A.4 B.3.2 C.3 D.2
已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为( )
A. (0.5,﹣0.5) B. (,) C. (2,1) D. (1.5,0.5)
如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为________m.