题目内容

如图,有一四边形纸片ABCD,AB//CD,AD//BC,∠A=60°,将纸片分别沿折痕MN、PQ折叠,使点A与AB边上的点E重合,点C与CD边上的点F重合,EG平分∠MEB交CD于G,FH平分∠PFD交AB于H,试说明:
(1)EG//FH;
(2)ME//PF。
证明:(1)∵点A沿MN折叠与点E重合,点C沿PQ折叠与点F重合,
∴∠MEA=∠A,∠PFC=∠C,
∵DC//AB,
∴∠D+∠A=180°,
∴∠D=120°,
∵AD//BC,
∴∠C+∠D=180,
∴∠C=60°,
∴∠MEA=∠PFC=60°,
∴∠MEB=∠PFD=120°,
∴EG、FH为角平分线,
∴∠MEG=∠GEH=∠PFH=∠HFD=60°,
∵DC//AB,
∴∠DGE=∠GEH,
∴∠DGE=∠GFH,
∴GE//FH;
(2)连接EF,
∵GE//FH,
∴∠GEF=∠HFE,
又∵∠MEG=∠PFH=60°,
∴∠GEF+∠MEG=∠HFE+∠PFH,
∴∠MEF=∠PFE,
∴ME//PF。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网