题目内容
如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为( )
![]()
A.62° B.152° C.208° D.236°
C【考点】三角形内角和定理.
【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.
【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,
又∵∠BED=∠D+∠EGD,
∴∠F+∠B=∠D+∠EGD,
又∵∠CGE+∠EGD=180°,
∴∠C+∠A+∠F+∠B﹣∠D=180°,
又∵∠D=28°,
∴∠A+∠B+∠C+∠F=180°+28°=208°,
故选:C.
![]()
【点评】本题主要考查了三角形内角和定理的知识,解答本题的关键是求出∠C+∠A+∠F+∠B﹣∠D=180°,此题难度不大.
练习册系列答案
相关题目