题目内容
如图,四边形是的内接矩形,如果的高线长,底边长,设,,
(1)求关于的函数关系式;
(2)当为何值时, 四边形的面积最大?最大面积是多少?
如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是 .
已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)动手操作:利用尺规作,以AB边上一点O为圆心,过A,D两点作⊙O,与AB的另一个交点为E,与AC的另一个交点为F(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由。
(2)若∠BAC=60度,CD=,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和)
如图1,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与P运动的时间x(单位:秒),的函数关系的图象大致如图2所示,那么P的运动路线可能为( )
A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O
如图是某几何体的三视图,那么这个几何体是( )
A.三菱锥 B.圆柱 C.球 D.圆锥
如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD=6 m,求大树的高度.
一个几何体的三视图如图所示,则这个几何体是 .
解方程
(1)
(2)
一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )
A.4 B.6 C.7 D.8