题目内容
如图,在△ABC中,∠C=90°,∠B=30°.
(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);
(2)计算的值.
某班体育委员记录了第一小组七位同学定点投篮(每人投10个)情况,投进篮筐的个数为6,10,5,3,4,8,4,这组数据的中位数是 .
如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.
(1)求A、B两点的坐标;
(2)求直线BC的函数关系式;
(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.
在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.10 B.8 C.5 D.3
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.
已知实数a、b满足(a+2)2+=0,则a+b的值为 .
如图,圆锥的表面展开图由一个扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,则这个扇形的面积为( )
A.300π B.150π C.200π D.600π
不等式组的解集是 .
如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM = AN;
(2)若⊙O的半径R = 3,PA = 9,求OM的长.