题目内容
如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有
- A.∠BAD=∠CAE
- B.△ABD≌△ACE
- C.AB=BC
- D.BD=CE
C
分析:由∠BAC=∠DAE可得∠BAD=∠CAE,通过“SAS”可得△BAD≌△CAE,从而求解.
解答:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△BAD≌△CAE,
∴BD=CE,∠BAD=∠CAE,BD=CE,
故A、B、D是正确的,C是错误的.
故选C.
点评:本题考查的是三角形全等判定定理和全等三角形的性质;是一道较为简单的三角形全等问题,做题时要对选项逐一验证.
分析:由∠BAC=∠DAE可得∠BAD=∠CAE,通过“SAS”可得△BAD≌△CAE,从而求解.
解答:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△BAD≌△CAE,
∴BD=CE,∠BAD=∠CAE,BD=CE,
故A、B、D是正确的,C是错误的.
故选C.
点评:本题考查的是三角形全等判定定理和全等三角形的性质;是一道较为简单的三角形全等问题,做题时要对选项逐一验证.
练习册系列答案
相关题目
| A、60° | B、90° | C、45° | D、120° |