题目内容

如图,PA、PB是 的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是 。

110°.

【解析】

试题分析:连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.

试题解析:连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:

∵PA、PB是⊙O的切线,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,又∠P=40°,

∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,

∵圆周角∠ADB与圆心角∠AOB都对弧AB,

∴∠ADB=∠AOB=70°,

又四边形ACBD为圆内接四边形,

∴∠ADB+∠ACB=180°,

则∠ACB=110°.

考点:1.切线的性质;2.圆周角定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网