题目内容

若(a2+b2)(a2+b2-2)=8,则a2+b2=
 
考点:解一元二次方程-因式分解法
专题:计算题
分析:先把等式变形为:(a2+b22-2(a2+b2)-8=0,再把等式左边分解得到(a2+b2-4)(a2+b2+2)=0,然后根据非负数的性质得到a2+b2=4.
解答:解:(a2+b22-2(a2+b2)-8=0,
(a2+b2-4)(a2+b2+2)=0,
所以a2+b2-4=0,
所以a2+b2=4.
故答案为4.
点评:本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网