题目内容
已知,求下列各式的值.
(1) ;
(2).
(2015秋•平顶山校级期中)如图,点C是线段AB上一点,AC<AB,M,N分别是AB和CB的中点,AC=8,NB=5,求线段MN的长.
若x=-1是关于x的方程的一个根,则______.
如图,直角坐标系中,点P(t,0)是x轴上的一个动点,过点P作y轴的平行线,分别与直线y=x,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.
(1)当t=2时,正方形ABCD的周长是 .
(2)当点(2,0)在正方形ABCD内部时(不包括边上),t的取值范围是 .
一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为 秒.
27的立方根是( )
A.9 B.-9 C.3 D.±3
的相反数是( )
A. B. C. D.
(2015秋•宁波校级期中)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:
甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC= °,并简要说明圆内接五边形ABCDE为正五边形的理由;
(2)如图2,请证明丙同学构造的六边形各内角相等;
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).
(2015秋•铁力市校级期末)如图,不是正方体展开图的是( )