题目内容
【题目】如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为 . ![]()
【答案】![]()
【解析】解:连接OD,如右图所示,![]()
由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,
∴BO=2OD=6,∠BOD=60°,
∴∠ODC=∠OCD=60°,AO=BOtan30°=
,
∵∠COE=90°,OC=3,
∴OE=OCtan60°=
,∴AE=OE﹣OA=
,所以答案是:
.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
练习册系列答案
相关题目